
Offloading Smartphone Firewalling Using
OpenFlow-capable Wireless Access Points

Daisuke Miyamoto∗, Ryo Nakamura∗, Takeshi Takahashi†, Yuji Sekiya∗
∗ The University of Tokyo

2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8658, JAPAN
daisu-mi@nc.u-tokyo.ac.jp, upa@wide.ad.jp, sekiya@wide.ad.jp

† National Institute of Information and Communications Technology
4-2-1 Nukuikitamachi, Koganei, Tokyo, 184-8795, JAPAN

takeshi takahashi@nict.go.jp

Abstract—This paper proposes new firewall for protecting
smartphone from cyber threats. The key idea is to offload
firewall functions to OpenFlow-capable wireless access points
(APs). The widespread use of smartphones requires protection
against cyber threats targeted to the device. Our research group
therefore explored the suitable protection schemes and found
that the OpenFlow-capable APs are able to facilitate configuring
filtering rules, and also make defense at the closest point to
the issued device, as well as saving energy consumption whereas
firewall applications work on smartphone heavily drain battery
life. In this paper, we design and implement our proto-type
implementation along with our consideration, show information
pipelining in order to provide cyber defense from threat infor-
mation, and discuss its interoperabiity aspect from international
standardization work.

Keywords—Network Security, Smartphone Protection, Software
Defined Network

I. INTRODUCTION

The attack surface of today’s cyberspace has been signif-
icantly enlarged by the rapid increase in smartphone usage
and the proliferation of diverse mobile applications, which
introduce a large variety of zero-day vulnerabilities. Accord-
ing to Schmidt et al. [1], smartphones started being targets
for malware in June 2004, and as of January 2014, there
are roughly 700,000 of cumulated Android malware samples
observed according to a report published by Sophos [2].

There are many motivations for attackers to target smart-
phones. One is the number of users. According to the report
from BI Intelligence [3], at the end of 2013, 6% of the global
population own a tablet and 22% own a smartphone, while
20% own a PC. Another motivation is the fact that smartphones
often hold much more personal information compared to PCs,
keeping detailed records of users’ contacts and SMS history
as well as sensitive account information regarding banking,
emails, social networks, and etc.

Mobile malware is one of the most significant cyber threats
on smartphones. One outstanding example is iBanking, a
criminal software targeting Android terminals. According to
the report from RSA [4], iBanking Mobile Bot is controlled
over HTTP or via SMS, and it allows bot herders to steal
personal information by reading incoming SMS messages,
intercept calls to the phone, and obtain files as well as contact
lists from the phone. It also has a function of phone fraud

which allows a bot master to gain money by calling premium
rate telephone service and charging the victim an expensive
toll fee. Besides, smartphones are sometimes used in DDoS
attacks. Android DDoS Origin [5] is a malware controlled via
SMS messages, including the victim’s host and port number.
It makes smartphones generate anomalous traffic.

In this paper, we focused on offloading firewall functions to
OpenFlow-capable wireless access points (APs). Since Open-
Flow provides powerful traffic control schemes, it facilitates
the implementation of firewall functions which can filter traffic
based on the header information of the network and transport
protocols such as IP address, and TCP/UDP port numbers. The
key idea is that our implementation runs on an access point
for filtering packets. It contributes to save network bandwidth
resource between the access point and other filtering devices.
Besides, our implementation is developed based on open
source applications and standard protocols. It may therefore
have flexibility and operability without using vendor specific
technology employed by proprietry products.

II. RELATED WORK

Generally, smartphone platforms have a method for allow-
ing users to grant permission to an application that needs to
access certain types of data. In the case of Android, whenever
an application wants to read the contact list, it declares the
request for this permission in its manifest file, effectively
asking users to grant the permission. If a user thinks something
is wrong, he/she may prevent the application from accessing
the contact list. In the case of iOS, a permission request dialog
box appears at runtime whenever an application first requests
access to any of several resources such as user’s geophysical
location [6]. The permission request process is intended to
inform users about the risks of installing applications, and
hence, users can only make correct security decisions based
on permissions.

However, in the case of Android, users had limited under-
standing of the permission warnings according to Felt et al. [7].
The authors also observed that Android permissions fail to be
informative to most users, while not being completely ineffec-
tive. In the case of iOS, Tan et al. reported that permission
requests that include explanations are significantly more likely
to be approved [8].

Fig. 1. An overview of smartphone protection using OpenFlow-capable APs

Another concern is the battery consumption of smart-
phones. Recently, almost all client OSes are equipped with the
personal firewall function. However, there is a serious factor
making the protection of the smartphone difficult, and that is
battery consumption. Firewall often acts as a service and it
stays active on the smartphone throughout the smartphone’s
operation. It is therefore important to ensure it has no severe
impact on the battery [9].

III. DESIGN

As we mentioned in Section II, the defense at the smart-
phone itself is difficult. Instead, we decided to offload smart-
phone firewalling function to network switching devices.

One type of defense mechanism is URL filtering, intended
to block specific web sites for all smartphones. The objective
of filtering is to prevent malware infection, botnet C&C, and
phishing. In such attacks, the HTTP protocol is respectively
used for malicious applications download, communications
with the bot master, and fraudulent websites access.

Packet filtering is another possible defense to prevent
smartphone devices from joining DDoS campaigns. Once a
smartphone device is infected with a trojan horse, it starts to
send data packets to a specified host (the victim) whenever it
receives a DDoS attack command. It should be noted that the
scope of DDoS mitigation is usually at the infrastructure layer
rather than the endpoints, even when protecting smartphones.
However, a major principle of DDoS protection stipulates
that the mechanism should filter DDoS traffic as close to the
attacker as possible. We therefore address DDoS mitigation at
the AP, which may be the closest to the source as possible
when we consider the case of a smartphone joining a DDoS
campaign.

We also consider that the smartphone firewall has the
ability to prevent infected smartphones from attacking neigh-
boring smartphones in some types of network. For example,
carrier networks tend to prohibit that a smartphone connects
to other smartphones in the same network. However, in future
networks, there is a possibility that carrier networks allow
a smartphone to connect to other smartphones (e.g., virtual
access point as proposed in IETF NVO3 WG1). In such case,
a smartphone firewall will be helpful to thwart the attacks.

1https://datatracker.ietf.org/wg/nvo3/documents/

TABLE I. SPECIFICATION OF WIRELESS ACCESS POINT

Product WZR-HP-1G300H
Vendor Buffalo
CPU Atheros AR 7161 (680Mhz)
Ram 128 MB
Disk 32 MB

Ethernet AR 8136
Wireless Atheros AR9223 (2.4GHz) and AR9220 (5.0GHz) 802.11abgn

Fig. 1 illustrates a high level overview of the architecture
we propose. As we can see, APs are placed at the closest point
to smartphone devices, and provide URL filtering to thwart
smartphone malware, C&C, and phishing, as well as packet
filtering to prevent smartphones from participating in DDoS
campaigns.

From these consideration, we have two requirements of
APs. One is Filtering ability. The APs must have the ability
to protect smartphones from malicious entities. It is therefore
capable to filter malicious URLs and to block suspicious IP
addresses. Another requirement is Operability. The APs should
be able to scale with the load of configurations.

IV. IMPLEMENTATION

We explored the suitable methods for URL filtering and
packet filtering. In the case of URL filtering, web proxy
systems have been widely used to block accessing malicious
websites, and it is easier to be configured. In the case of packet
filtering, we found a Software Defined Network technologies
can provide powerful schemes for adding and/or deleting IP
address in order to prevent smartphone from accessing to
malicious hosts.

We chose RYU [10], a python framework for OpenFlow
Controller (OFC), to develop our implementation as an Open-
Flow application. Since there are few available wireless access
points which are capable to OpenFlow, we installed Open-
Wrt [11], a Linux-based firmware for extensible configuration,
into wireless access points and then used Open vSwitch [12]
for OpenFlow Switch (OFS).

Our configuration for OFS are as follows.

1) Network Configuration: We configured three types of
network, namely, wireless, internet, and management inter-
faces. The wireless interface is used for inside network where
users’ smartphone devices are connected. The internet interface
is connected to the Internet, and the management interface is
for interacting to the OFC. We also setup a pseudo device that
we called bridge interface, in order to forward packets between
wireless and internet interfaces.

2) Access Point Configuration: To accept the connection
from smartphone devices, each AP is configured to capable to
802.11 n/g wireless networking protocols. The configuration
also includes AP’s Service Set Identifier (SSID), encryption,
authentication, and signal strength.

3) OpenFlow Configuration: For interacting between OFC
and OFS, we assign the private IP address to AP’s management
interface, and connect to OFS with Fast Ethernet.

Aside from OFS, our algorithm for packet forwarding
running on OFC is summarized as Algorithm 1. Each packet
incoming to OFS will ask OFC to check the IP address with the

Algorithm 1 Pseudo Code of Resilient Firewall
for all packets do

Read the list of suspicious IP addresses
if the source or destination IP address is listed then

Discard the packet
else

Forward the packet
end if

end for

Fig. 2. Stress Test Analysis of the APIs using Siege

list of suspicious IP addresses. If it is listed, the OFC controls
OFS to discard the issued packet.

Our application developed for OFC runs HTTP server and
accepts requests by using following APIs.

/add_blocking_ip/{IPADDR}
This API is for adding specified IP address to the
list of the suspicious IP addresses.

/del_blocking_ip/{IPADDR}
This API is for deleting specified IP address from
the list of the suspicious IP addresses.

/delassoc_client/{IPADDR}
This API is used for deassociating a smartphone
device which is assigned the specified IP address.

It should be noted that the disassociation of the smartphone
device is the out of support in OpenFlow protocols. When
this API is called, it runs such OS commands that extracting
the MAC address from the IP address, and disconnecting the
issued MAC address powered by IW [13], a CLI configuration
utility for wireless devices.

V. PRELIMINARY EVALUATION

This section provides the results of our preliminary evalu-
ation. We ran our implementation on a PC which has Intel
Core i7 2.8GHz (2core) processors and 16GB of memory,
and configured an OFC and an OFS. We then evaluated
performance with Siege [14], a stress test tool. We queried
these APIs via HTTP 1000 times, and observed the average
number of transactions per second.

Fig. 2 shows the benchmark results for adding and delet-
ing blocking IP address APIs on several concurrency levels,
i.e., the number of clients which concurrently send requests.
For each concurrency level, 1000 of randomly generated IP
addresses were inputted to the APIs. X axis denotes the
average number of transactions per second and Y axis denotes
the concurrency level. The blue and orange bars denote the
performance for adding and deleting the IP addresses, in
respectively. Given the concurrent level was 500, we observed

<?xml version="1.0" encoding="UTF-8"?>
<IODEF-Document xmlns="urn:ietf:params:xml:ns:iodef-1.0">
<Incident purpose="reporting">
<DetectTime>2015-11-01T22-00-00+09:00</DetectTime>
<ReportTime>2015-11-02T09-00-00+09:00</ReportTime>
<IncidentID>123456</IncidentID>
<Description>DoS</Description>
<Assessment>
<Impact type="dos"/>

</Assessment>
<EventData>
<Flow>
<System category="source">
<Node>
<Counter type="event">10000</Counter>
<Address category="ipv4-addr">192.168.1.1</Address>

</Node>
<Service ip_protocol="4"/>

</System>
</Flow>
<Expectation action="investigation"/>

</EventData>
</Incident>

</IODEF-Document>

Fig. 3. Information Pipelining with IODEF message

the worst performance, however, it was still more than 200
transactions per second. We will analyze its feasibility aspect
from performance along with the reasonable threshold in our
future work.

VI. DISCUSSION

A. Information Pipelining

Threat information needs to be reported, exchanged, and
shared among organizations in order to cope with cyber threats.
Such exchanges, however, are mostly done by individual
operators based on their own personal networks, and they are
usually done by manual operations such as telephone calls,
emails, and face-to-face meetings.

The viewpoint from the automated protection, there are a
few pieces missing toward practical cyber defense. Our firewall
should therefore address the information pipeline from the
exchanged threat information to actual cyber defense. This
section briefly introduces the common format for exchanging
threat information and how we can deal with.

1) IODEF message exchange: Incident Object Description
Exchange Format (IODEF) [15] is an international standard
for exchanging incident information. It defines a data model
and its XML schema for describing incident information and
enables exchange of the information between computers. It has
been already used by several organizations, such as US-CERT,
and has advanced the automated exchange of information.

Our developed system supported a translator which can
convert IODEF message exchange to our REST-ful APIs.
Fig. 3 shows an example for IODEF message to inform DoS
attacks. Our translator uses iodeflib [16], a python framework
to read and edit IODEF message, and then extract the issued
IP address, in this case, 192.168.1.1. It finally accesses to our
REST-ful APIs to mitigate the DoS Attack.

2) n6 message exchange: n6 is a platform for process-
ing security-related information, developed by NASK, CERT
Polska [17]. Its API provides a common and unified way of
representing data across the different sources that participate

{
"address": [{ "ip": 192.168.1.1, "asn": 65001 }],
"category": "dos",
"source": "source-name",
"confidence": "high"

}

Fig. 4. Information Pipelining with n6 message

in knowledge management. n6 exposes a REST-ful API over
HTTPS with mandatory authentication via TLS client certifi-
cates, to ensure confidential and trustworthy communications.
Moreover, it uses an event-based data model for representation
of all types of security information. Each event is represented
as a JSON object with a set of mandatory and optional
attributes.

Our developed system also supported a translator which
can convert n6 message exchange. Fig. 4 shows an example
for n6 message to inform DoS attacks. Our translator reads
JSON format to extract the issued IP address, 192.168.1.1.

B. Interoperability

This paper demonstrated the feasibility of dynamic fire-
wall management for smartphone devices. Our prototype used
IODEF and n6, which are designed for the purpose of incident
information sharing, and is not designed for firewall manage-
ment. We do not particularly stick to these data model since
it is more important to control the firewall and protect the
smartphones regardless of the data model of the messages.
Having said that, if we have a standardized common data
model for that, it would help facilitating interoperability.

Until now, we do not have any prominent and standardized
technique for firewall management, but we believe having such
a standardized method will help reinforcing the android users.
One such activity was just initiated in IETF I2NSF 2 working
group. The working group aims at controlling and managing
firewall on the network. It for instance defines the framework
of the remote firewall management, and the data model of the
information exchanged with firewall entities. We are hoping to
see that this particular activity will be the striking one.

Though our current implementation does not cope with
I2NSF at this moment since it has not produced any RFC yet,
we are happy to cope with its deriverables once it produce a
standardized technique. On the other hand, we hope that our
activities could also contribute to the development of these
standardization activities.

VII. CONCLUSION

In this paper, we presented new firewall work on
OpenFlow-capable wireless access points (APs). Our proto-
type was based on OpenWrt, and was configured to deal with
an OpenFlow protocol in order to facilitate adding new filtering
rules. We then implemented an OpenFlow controller to provide
REST-ful APIs that are available for blocking or unblocking
the specified IP address, as well as deassociating a smartphone
device which was assigned the specified IP address.

Since our system addressed the information pipelining
toward automated cyber defense, we reviewed several threat

2https://datatracker.ietf.org/wg/i2nsf/documents/

information exchange formats and confirmed that our system
could deal with them. We also discussed the interoperability
among firewall functions powered by software defined net-
work, and speculated that our system can be feasible to have
the interoperability.

ACKNOWLEDGMENT

This research has been supported by the Strategic Interna-
tional Collaborative R&D Promotion Project of the Ministry of
Internal Affairs and Communication, Japan, and by the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. 608533 (NECOMA). The opinions
expressed in this paper are those of the authors and do not
necessarily reflect the views of the Ministry of Internal Affairs
and Communications, Japan, or of the European Commission.

REFERENCES

[1] A.-D. Schmidt, H.-G. Schmidt, L. Batyuk, J. H. Clausen, S. A.
Camtepe, S. Albayrak, and C. Yildizli, “Smartphone malware evolution
revisited: Android next target?” in Proceedings of the 4th International
Conference on Malicious and Unwanted Software, Oct. 2009, pp. 1–7.

[2] V. Svajcer, “Sophos Mobile Security Threat Report,” Available
at: http://www.sophos.com/en-us/medialibrary/PDFs/other/
sophos-mobile-security-threat-report.pdf, 2014.

[3] J. Heggestuen, “One In Every 5 People In The World Own A Smart-
phone, One In Every 17 Own A Tablet,” Available at: http://www.
businessinsider.com/smartphone-and-tablet-penetration-2013-10, Dec.
2013.

[4] RSA Online Fraud Resource Center, “The Current State of Cyber-
crime 2014,” Available at: http://www.emc.com/collateral/white-paper/
rsa-cyber-crime-report-0414.pdf, May 2014.

[5] Dr.Web, “New Trojan for Android can mount DDoS attacks,” Available
at: https://news.drweb.com/show/?i=3191&lng=en, Dec. 2012.

[6] Apple Inc., “iOS Developer Library,” Available at: https://developer.
apple.com/library/ios/releasenotes/General/WhatsNewIniOS/Articles/
iOS9.html, Oct. 2015.

[7] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android Permissions: User Attention, Comprehension, and Behavior,”
in Proceedings of the Eighth Symposium on Usable Privacy and
Security, Jul. 2012, pp. 3:1–3:14.

[8] J. Tan, K. Nguyen, M. Theodorides, H. Negrón-Arroyo, C. Thomp-
son, S. Egelman, and D. Wagner, “The Effect of Developer-specified
Explanations for Permission Requests on Smartphone User Behavior,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, Apr. 2014, pp. 91–100.

[9] J. Vincent, C. Porquet, M. Borsali, and H. Leboulanger, “Privacy Pro-
tection for Smartphones: An Ontology-Based Firewall,” in Proceedings
of the 5th Workshop in Information Security Theory and Practice, Jun.
2011, pp. 371–380.

[10] Nippon Telegraph and Telephone Corporation, “Ryu Network Operating
System,” Available at: http://osrg.github.com/ryu.

[11] OpenWrt Project, “OpenWrt,” Available at: http://wiki.openwrt.org/
about/start.

[12] Open vSwitch, “Production Quality, Multilayer Open Virtual Switch,”
Available at: http://openvswitch.org.

[13] IW, “Linux Wiless,” Available at: https://wireless.wiki.kernel.org/en/
users/documentation/iw.

[14] J. Fulmer, “Siege,” Available at: https://www.joedog.org/siege-home/.
[15] R. Danyliw, J. Meijer, and Y. Demchenko, “The Incident Object

Description Exchange Format,” Available at: http://www.rfc-editor.org/
rfc/rfc5070.txt, Internet Engineering Task Force, RFC 5070, Dec. 2007.

[16] Decalage, “iodeflib - a python library to create, parse and edit IODEF in-
cident reports,” Available at: http://www.decalage.info/python/iodeflib.

[17] CERT-Polska, “n6sdk,” Available at: https://github.com/CERT-Polska/
n6sdk.

